Automatic Magnetic Loop Tuner – SWR Bridge In A RF Shielded Box

Since we are dealing with RF we have to keep it away from all other components and equipment in our shack. The only thing you want to generate or pick-up RF with is your antenna. In our case a magnetic loop antenna.

The purpose of the SWR Bridge, or tandem match, is to measure the difference between the forwarded and reflected power. To do that, we have to place the SWR Bridge between our antenna and our transceiver. Idealy this should be done as close as possible to the antenna. This however, is not very practical, as you won’t be able to read the values on the screen.

That’s why its placed inside the automatic magnetic loop controller unit and also why we need to create a shield that will keep the RF inside the SWR Bridge box.

To be able to measure the differences between forward and reflected power, we need to connect the SWR Bridge to the Teensy, pad A10 and A11. If we would just drill two holes in the tinned box and wired the SWR Bridge directly to the Teensy, the RF could still escape and cause trouble in our tuner or even in the shack. By using feed through capacitors, we can connect the SWR Bridge to the Teense and measure both forward and reflected power, while still keeping the RF in the shielded box.

Let’s zoom in on the electric diagrams, the source code and the PCB design to know how the SWR Bridge must be connected to the Automatic Magnetic Loop Controller PCB’s. This implies both Loftur as mine PCB designs.

Sontheimer Bridge. 200 W version.

From the ML.h file:
// AD inputs for Forward and Reflected Power (SWR measurement)
const int Pfwd = A10;
const int Pref = A11;

Looking at the SWR Bridge, or Sontheimer Bridge, it’s fairly easy to understand. Connect your transceiver to RF In, connect the antenna to RF Out. On the other side of the board we have FWD (pin 1), GND (pin 2) and REF (pin 3). This is the part where we need to keep attention. On the PCB the pinout position is different for GND and REF.

Connect SWR Bridge pin 1 (FWD) with pin 1 on the PCB, SWR Bridge pin 2 (GND) with pin 3 on the PCB and SWR Bridge pin 3 (REF) with pin 2 on the PCB. After our signals went through some resistors and capacitors, they can be connected via another 3 pin header to the Teensy 3.2 pads A10 and A11. Pin 1 (FWD) is connected to Teensy pad A10, and pin 2 (REF) to Teensy pad A11.

SWRBridgeBox

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.